Note

Synthesis of hexa-*O*-acetyl-β-rutinosyl chloride using the dichloromethyl methyl ether-boron trifluoride etherate reagent*

ISTVAN FARKAS ILONA F SZABO LASZLO ZOLNAY, AND REZSŐ BOGNAR

Institute of Organic Chemistry, Lajos Kossuth University and Chemical Research Group for Antibiotics of the Hungarian Academy of Sciences H-4010 Debrecen (Hungary) (Received December 6th, 1976, accepted for publication, January 14th, 1977)

The boron trifluoride etherate-catalyzed reaction of 1,2-trans-glycopyranose acetates with dichloromethyl methyl ether at 20° gives the corresponding 1,2-trans-glycopyranosyl chlorides in high yield ¹ The procedure has been successfully applied ² for methyl glycopyranuronate 1,2-trans-acetates, and the reaction was found to be stereospecific

We now report a novel extension of this method to octa-O-acetyl- β -cellobiose and hepta-O-acetyl- β -rutinose, from which hepta-O-acetyl- β -cellobiosyl chloride (1), synthesized recently by a different method³, and hitherto unknown hexa-O-acetyl- β -rutinosyl chloride (2), respectively, were obtained in good yield The anomeric configuration of the products was proved by p m r spectroscopy

The mechanism of the reaction was explained ¹ ² as proceeding via an acyloxonium ion intermediate, and this view is supported by our present investigation. Thus, 1,3,4,6-tetra-O-acetyl-2-O-trichloroacetyl- β -D-glucopyranose (3) and 1,3,4,6-tetra-O-acetyl-2-chloro-2-deoxy- β -D-glucopyranose (4) do not react with the dichloromethyl methyl ether-boron trifluoride etherate reagent. The failure to form the glycosyl chloride can be explained by the fact that the C-2 substituent of 3 and 4 is unable to participate with the neighbouring C-1 acetoxyl group, so that an acyloxonium intermediate cannot form. By contrast, the zinc chloride ⁴- or stannic tetrachloride ⁵-catalyzed reaction of compound 4 with dichloromethyl methyl ether gave the known α -glycosyl chloride (5)

EXPERIMENTAL

The purity of the products was checked by t1c on Silica gel G (Merck) with 21 toluene—ether for monosaccharide derivatives, and 91 benzene—acetone for disaccharide derivatives Detection was effected by charring with 5% sulphuric acid in ethanol Pmr spectra were recorded for solutions in chloroform-d or hexa-

^{*}Synthesis of 1,2-trans-Glycopyranosyl Chlorides Part II For Part I, see Ref 1

NOTE 479

methylphosphoric triamide with Me₄Si as internal standard, using a Jeol MH-100 (100 MHz) instrument

Hepta-O-acetyl-β-cellobiosyl chloride (1) — A solution of octa-O-acetyl-β-cellobiose (1 g) in chloroform (3 ml) was treated with dichloromethyl methyl ether (2 ml) and boron trifluoride etherate (0 1 ml) at 20° for 3 h, and then concentrated to dryness in vacuo (bath temperature, 20°). A solution of the residue in chloroform was washed with ice-cold water, dried (MgSO₄), and concentrated to 5 ml. After the addition of ether, the crude product crystallized, and it was recrystallized from chloroform-ether to gize 1 (0 71 g, 74%), mp. 160°, [α]_D – 75° (c 1 06, chloroform), and –11 3° [c 1 05, P(NMe₂)₃], lit 3 mp. 172–173°, [α]_D²² – 12 2° [P(NMe₂)₃]. P m r data [P(NMe₂)₃] δ 6 05 (d, 1 H, $J_{1,2}$ 8 Hz, H-1), lit 3 τ 3 92 ($J_{1,2}$ 8–9 Hz), the H-1 signal of the α-anomer at δ 6 30 [d, $J_{1,2}$ 3 9 Hz, P(NMe₂)₃] could not be observed in the spectrum of 1

Anal Calc for C₂₆H₃₅ClO₁₇ Cl, 541 Found Cl, 556

Hexa-O-acetyl-β-rutinosyl chloride (2) — Hepta-O-acetyl-β-rutinose (1 g) was cleaved (2 h, 20°), by the method described for 1, to obtain 2 (0 73 g, 76%), m p 152–153°, [α]_D -30 4° (ϵ 1 02, chloroform) P m r data [P(NMe₂)₃] δ 6 10 (d, 1H, $J_{1\,2}$ 8 Hz, H-1), the H-1 signal of the α-anomer at δ 6 30 (d, $J_{1\,2}$ 3 6 Hz) could not be observed in the spectrum of 2

Anal Calc for C₂₄H₃₃ClO₁₅ Cl, 5 94 Found Cl, 6 00

Treatment of 3 and 4 with the dichloromethyl methyl ether-boron trifluoride etherate reagent — Compounds 3 and 4 (0 5-0 5 g) were separately dissolved in chloroform (1-2 ml), treated with dichloromethyl methyl ether (1 ml) and boron trifluoride etherate (0 05 ml), and worked-up as described above for 1

From the reaction mixture of 3, 0 38 g (76%) of unreacted 3 was recovered after 4 h, m p $163-164^{\circ}$, $[\alpha]_D + 16.8^{\circ}$ (c 0.54 chloroform), lit 6 m p $165-166^{\circ}$, $[\alpha]_D + 17.9^{\circ}$ (chloroform)

From the reaction mixture of 4, 82% of the unchanged starting-material could be recovered after 24 h, m p 114–115° $[\alpha]_D$ +56 2° (c 0 45, chloroform) lit ⁷ m p 114–115°, $[\alpha]_D$ +57 2° (chloroform)

3,4,6-Tri-O-acetyl-2-chloro-2-deoxy- α -D-glucopyi anosyl chloride (5) — A solution of 4 (1 g) in chloroform (3 ml) was treated with dichloromethyl methyl ether (2 ml) and stannic tetrachloride (0 1 ml) at 20° for 1 h, or zinc chloride (0 1 g) at 50° for 4 h. After working-up the reaction mixtures in the usual manner, compound 5 was obtained in 70–75% yield, m p 96–97° (from ether-light petroleum), $[\alpha]_D + 230^\circ$ (c 0 49, chloroform), lit 8 m p 96–97° and 99–101°, $[\alpha]_D + 218^\circ$ and $+227.6^\circ$ (chloroform)

Anal Calc for C₁₂H₁₆Cl₂O₇ Cl, 20 66 Found Cl, 20 53

REFERENCES

¹ I FARKAS, I F SZABO, R BOGNAR, AND D ANDERLE, Carbohydr Res, 48 (1976) 136-138

² P Kováč, I Farkas, V Mihalov, R Palovčik, and R Bognar, J Carbohydr Nucleos Nucleot, 3 (1976) 57-69

480 NOTE

- 3 W E DICK AND D WEISLEDER, Carbohydr Res, 46 (1976) 173-182
- 4 H GROSS AND I FARKAS, Chem Ber, 93 (1960) 95-99, I FARKAS, M MENYHART, R BOGNAR, AND H GROSS, ibid, 98 (1965) 1419-1426
- 5 I FARKAS, I F SZABO, M MENYHART, É R DAVID, AND R BOGNAR, Acta Chim Acad Sci Hung, in press
- 6 R U LEMIEUX AND G HUBER, Can J Chem, 31 (1953) 1040-1047
- 7 K IGARASHI, J IRISHAVA, AND T HONMA, Carbohydr Res, 39 (1975) 213-225
- 8 R U LEMIEUX AND B FRASER-REID, Can J Chem , 43 (1965) 1460–1475, K IGARASHI, T HONMA, AND T IMIGAWA J Org Chem , 35 (1970) 610–616